Search results for "Reduced properties"

showing 9 items of 9 documents

Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide.

2008

Monte Carlo simulations are presented for a coarse-grained model of real quadrupolar fluids. Molecules are represented by particles interacting with Lennard-Jones forces plus the thermally averaged quadrupole-quadrupole interaction. The properties discussed include the vapor-liquid coexistence curve, the vapor pressure along coexistence, and the surface tension. The full isotherms are also accessible over a wide range of temperatures and densities. It is shown that the critical parameters (critical temperature, density, and pressure) depend almost linearly on a quadrupolar parameter q=Q(*4)T*, where Q* is the reduced quadrupole moment of the molecule and T* the reduced temperature. The mode…

BinodalSurface tensionReduced propertiesLennard-Jones potentialChemistryVapor pressureMoment (physics)Monte Carlo methodGeneral Physics and AstronomyThermodynamicsPhysical and Theoretical ChemistryPerturbation theoryThe Journal of chemical physics
researchProduct

A Novel Method for Characterizing Temperature Sensitivity of Silicon Wafers and Cells

2019

In this paper, we present a novel method to obtain temperature dependent lifetime and implied-open-circuit voltage (iV OC ) images of silicon wafers and solar cells. First, the method is validated by comparing the obtained values with global values acquired from lifetime measurements (for wafers) and current-voltage measurements (for cells). The method is then extended to acquire spatially resolved images of iV OC temperature coefficients of silicon wafers and cells. Potential applications of the proposed method are demonstrated by investigating the temperature coefficients of various regions across multi-crystalline silicon wafers and cells from different heights of two bricks with differe…

010302 applied physicsBrickTemperature sensitivityMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesReduced propertiesImpurity0103 physical sciencesOptoelectronicsWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessVoltage2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Effect of Stiffness on the Micellization Behavior of Model H4T4 Surfactant Chains

2006

The micellization behavior of a series of model surfactants, all with four head and tail groups (H4T4) but with different degrees of chain stiffness, was studied using grand canonical Monte Carlo simulations on a cubic lattice. The critical micelle concentration, micellar size, and thermodynamics of micellization were examined. In all cases investigated, the critical micelle concentration was found to increase with increasing temperature as observed for nonionic surfactants in apolar or slightly polar solvents. At a fixed reduced temperature and increasing chain stiffness, in agreement with previous observations, it was found that the critical micelle concentration decreased and the average…

Aggregation numberChemistryCrystal lattices Hydrophobicity Micelles Molecular structure Monte Carlo methods SolventsThermodynamics of micellizationMonte Carlo methodtechnology industry and agricultureThermodynamicsSurfaces and InterfacesCondensed Matter PhysicsMicelleSurface-Active AgentsReduced propertiesPulmonary surfactantCritical micelle concentrationElectrochemistryThermodynamicsOrganic chemistryPolarGeneral Materials ScienceMonte Carlo MethodMicellesSpectroscopySettore CHIM/02 - Chimica FisicaLangmuir
researchProduct

Photoluminescence-Based Spatially Resolved Temperature Coefficient Maps of Silicon Wafers and Solar Cells

2020

In this article, we present a method to obtain implied open-circuit voltage images of silicon wafers and cells at different temperatures. The proposed method is then demonstrated by investigating the temperature coefficients of various regions across multicrystalline silicon wafers and cells from different heights of two bricks with different dislocation densities. Interestingly, both low and high temperature coefficients are found in dislocated regions on the wafers. A large spread of temperature coefficient is observed at regions with similar performance at 298 K. Reduced temperature sensitivity is found to be correlated with the increasing brick height and is exhibited by both wafers and…

010302 applied physicsBrickPhotoluminescenceMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsReduced properties0103 physical sciencesOptoelectronicsDegradation (geology)WaferElectrical and Electronic EngineeringDislocation0210 nano-technologybusinessTemperature coefficientImage resolutionIEEE Journal of Photovoltaics
researchProduct

Dynamics at the Temperature Crossover in Dilute Polymer Solutions Investigated by Neutron Spin-Echo Spectroscopy

1980

Applying ultrahigh-resolution neutron spin-echo spectroscopy the existence of a $q$-dependent temperature crossover in the dynamics of dilute polymer solutions was proved. It is associated with the transition from $\ensuremath{\theta}$ to good solvent conditions. At small momentum transfers $q$ a nearly stepwise increase of the reduced quasielastic linewidth versus the reduced temperature was observed. With increasing $q$, both the sharpness of the transition and the step height decrease.

Momentumchemistry.chemical_classificationLaser linewidthMaterials scienceReduced propertieschemistryCondensed matter physicsCrossoverGeneral Physics and AstronomyNeutronPolymerSpectroscopyNeutron spin echoPhysical Review Letters
researchProduct

Thermodynamics of the Classical Planar Ferromagnet Close to the Zero-Temperature Critical Point: A Many-Body Approach

2012

We explore the low-temperature thermodynamic properties and crossovers of ad-dimensional classical planar Heisenberg ferromagnet in a longitudinal magnetic field close to its field-induced zero-temperature critical point by employing the two-time Green’s function formalism in classical statistical mechanics. By means of a classical Callen-like method for the magnetization and the Tyablikov-like decoupling procedure, we obtain, for anyd, a low-temperature critical scenario which is quite similar to the one found for the quantum counterpart. Remarkably, ford>2the discrimination between the two cases is found to be related to the different values of the shift exponent which governs the beha…

Computer Science::Machine LearningPhysicsArticle SubjectCondensed matter physicsThermodynamicsStatistical mechanicsCondensed Matter PhysicsComputer Science::Digital Librarieslcsh:QC1-999Statistics::Machine LearningReduced propertiesCritical point (thermodynamics)Critical lineComputer Science::Mathematical SoftwareExponentCritical exponentQuantumlcsh:PhysicsPhase diagramAdvances in Condensed Matter Physics
researchProduct

Crossover scaling in two dimensions

1997

We determine the scaling functions describing the crossover from Ising-like critical behavior to classical critical behavior in two-dimensional systems with a variable interaction range. Since this crossover spans several decades in the reduced temperature as well as in the finite-size crossover variable, it has up to now largely evaded a satisfactory numerical determination. Using a new Monte Carlo method, we could obtain accurate results for sufficiently large interactions ranges. Our data cover the full crossover region both above and below the critical temperature and support the hypothesis that the crossover functions are universal. Also the so-called effective exponents are discussed …

Condensed Matter::Quantum GasesStatistical Mechanics (cond-mat.stat-mech)Monte Carlo methodCrossoverFOS: Physical sciencesCondensed Matter - Soft Condensed MatterReduced propertiesCover (topology)Soft Condensed Matter (cond-mat.soft)Statistical physicsCritical exponentScalingCondensed Matter - Statistical MechanicsInteraction rangeVariable (mathematics)Mathematics
researchProduct

Quasi-elastic light scattering in polymer-containing microemulsion

1996

Abstract Quasi-elastic light scattering (QELS) was performed in dilute water in oil microemulsion stabilized by AOT surfactant. The water-soluble polyethylene oxide (PEO) with low molecular weight (8000) added to the microemulsion seems to be confined within the aqueous microphase, since PEO is insoluble in oil (n-heptane). The measurements by QELS of diffusion coefficient, at dilute concentrations, allow determination of the size of the droplets. The phase diagram of the microemulsion undergoes remarkable changes on addition of the polymer. The results show that at fixed R ( water surfactant ratio) the droplets decrease their size as the concentration of polymer increases. This occurrence …

chemistry.chemical_classificationAqueous solutionChromatographyHydrodynamic radiusDiffusionOrganic Chemistrytechnology industry and agriculturePolymerLight scatteringAnalytical ChemistryInorganic ChemistryReduced propertieschemistryPulmonary surfactantChemical engineeringMicroemulsionSpectroscopyJournal of Molecular Structure
researchProduct

Reduced temperature sensitivity of multicrystalline silicon solar cells with low ingot resistivity

2016

This study presents experimental data on the reduction of temperature sensitivity of multicrystalline silicon solar cells made from low resistivity ingot. The temperature coefficients of solar cells produced from different ingot resistivities are compared, and the advantages of increasing the net doping are explained.

010302 applied physicsMaterials scienceTemperature sensitivityintegumentary systemSiliconDopingMetallurgytechnology industry and agriculturefood and beverageschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMonocrystalline siliconReduced propertieschemistryElectrical resistivity and conductivity0103 physical sciencesIngot0210 nano-technologySensitivity (electronics)2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
researchProduct